[ Close ]
Username
Password


Forgotten your password?
 
Custom Search
Electrical, Electronics & Communication Projects
 Projects Q A, Guidance for your projects Projects Forum Electrical, Electronics & Communication Projects
Message Icon Topic: MIMO-Wireless - MLD detection using ant colony opt Post Reply Post New Topic
Found this useful? Give a +1   Add to Facebook: Add to Facebook
Free Project Downloads
Electronics Project Download
ECE Mini Project Downloads
Robotics Projects Downloads
Wireless Project Downloads
Space Project Downloads
Embedded Project Download
Microcontroller Downloads
Power Harvesting Projects
Project Topics
All Electronics Projects
ECE Project Topics
VLSI Projects List
Microcontroller Projects
DSP Project Topics
Other Electronics Projects
Electrical (EEE) Projects
Project Presentation Tips
How to choose Project Topic
Tips for Final Year Project
Steps for FYP, Mini Project
Preparing a Project Report
Problems faced in Projects
 
Get Free Electronics (ECE) / Electrical (EEE) Project Downloads:

Enter your email address:  

Author Message
Nivethalakshmi
Newbie
Newbie


Joined: 14-Oct-2012
Online Status: Offline
Posts: 0
Quote Nivethalakshmi Replybullet Topic: MIMO-Wireless - MLD detection using ant colony opt
    Posted: 14-Oct-2012 at 5:19pm
can u sent me the matlab coding for Near MLD detection using ant colony optimisation. author Jenn-Kaie Lain,IEEE,and Jyun-Yu Chen

 
IP IP Logged
PrashanthS
Senior Member
Senior Member


Joined: 21-Sep-2008
Online Status: Offline
Posts: 0
Quote PrashanthS Replybullet Posted: 14-Oct-2012 at 11:41pm
Check this out buddy...

Image edge detection using variation-adaptive ant colony optimization

function main
%
% This is a demo program of J. Tian, W. Yu, L. Chen, and L. Ma, "Image edge
% detection using variation-adaptive ant colony optimization,"
% Transactions on CCI V, LNCS 6910, 2011, pp. 27-40.
%
% Contact: eejtian@gmail.com
%

close all; clear all; clc;

img = double(imread('test.bmp'))./255;
[nrow, ncol] = size(img);

fprintf('Welcome to demo program.\nPlease wait......\n');

v = zeros(size(img));
v_norm = 0;
for rr =1:nrow
    for cc=1:ncol
        %defination of clique
        temp1 = [rr-2 cc-1; rr-2 cc+1; rr-1 cc-2; rr-1 cc-1; rr-1 cc; rr-1 cc+1; rr-1 cc+2; rr cc-1];
        temp2 = [rr+2 cc+1; rr+2 cc-1; rr+1 cc+2; rr+1 cc+1; rr+1 cc; rr+1 cc-1; rr+1 cc-2; rr cc+1];

        temp0 = find(temp1(:,1)>=1 & temp1(:,1)<=nrow & temp1(:,2)>=1 & temp1(:,2)<=ncol & temp2(:,1)>=1 & temp2(:,1)<=nrow & temp2(:,2)>=1 & temp2(:,2)<=ncol);

        temp11 = temp1(temp0, :);
        temp22 = temp2(temp0, :);

        temp00 = zeros(size(temp11,1));
        for kk = 1:size(temp11,1)
            temp00(kk) = abs(img(temp11(kk,1), temp11(kk,2))-img(temp22(kk,1), temp22(kk,2)));
        end

        if size(temp11,1) == 0
            v(rr, cc) = 0;
            v_norm = v_norm + v(rr, cc);
        else
            lambda = 10;
            temp00 = sin(pi .* temp00./2./lambda);
            v(rr, cc) = sum(sum(temp00.^2));
            v_norm = v_norm + v(rr, cc);
        end
    end
end
v = v./v_norm;
v = v.*100;
% pheromone function initialization
p = 0.0001 .* ones(size(img));     

%paramete setting
alpha = 10;      
beta = 0.1;     
rho = 0.1;      
phi = 0.05;     

ant_total_num = round(sqrt(nrow*ncol));
ant_pos_idx = zeros(ant_total_num, 2); % record the location of ant

% initialize the positions of ants
rand('state', sum(clock));
temp = rand(ant_total_num, 2);
ant_pos_idx(:,1) = round(1 + (nrow-1) * temp(:,1)); %row index
ant_pos_idx(:,2) = round(1 + (ncol-1) * temp(:,2)); %column index

search_clique_mode = '8';
memory_length = 40;

% record the positions in ant's memory, convert 2D position-index (row, col) into
% 1D position-index
ant_memory = zeros(ant_total_num, memory_length);
total_step_num = 300;
total_iteration_num = 4;

for iteration_idx = 1: total_iteration_num

    %record the positions where ant have reached in the last 'memory_length' iterations    
    delta_p = zeros(nrow, ncol);

    for step_idx = 1: total_step_num

        delta_p_current = zeros(nrow, ncol);

        for ant_idx = 1:ant_total_num

            ant_current_row_idx = ant_pos_idx(ant_idx,1);
            ant_current_col_idx = ant_pos_idx(ant_idx,2);

            % find the neighborhood of current position
            if search_clique_mode == '4'
               rr = ant_current_row_idx;
               cc = ant_current_col_idx;
               ant_search_range_temp = [rr-1 cc; rr cc+1; rr+1 cc; rr cc-1];
            elseif search_clique_mode == '8'
               rr = ant_current_row_idx;
               cc = ant_current_col_idx;
               ant_search_range_temp = [rr-1 cc-1; rr-1 cc; rr-1 cc+1; rr cc-1; rr cc+1; rr+1 cc-1; rr+1 cc; rr+1 cc+1];
            end

            %remove the positions our of the image's range
            temp = find(ant_search_range_temp(:,1)>=1 & ant_search_range_temp(:,1)<=nrow & ant_search_range_temp(:,2)>=1 & ant_search_range_temp(:,2)<=ncol);
            ant_search_range = ant_search_range_temp(temp, :);

            %calculate the transit prob. to the neighborhood of current
            %position
            ant_transit_prob_v = zeros(size(ant_search_range,1),1);
            ant_transit_prob_p = zeros(size(ant_search_range,1),1);

            for kk = 1:size(ant_search_range,1)

               temp = (ant_search_range(kk,1)-1)*ncol + ant_search_range(kk,2);

               if length(find(ant_memory(ant_idx,:)==temp))==0 %not in ant's memory
                    ant_transit_prob_v(kk) = v(ant_search_range(kk,1), ant_search_range(kk,2));
                    ant_transit_prob_p(kk) = p(ant_search_range(kk,1), ant_search_range(kk,2));
               else %in ant's memory   
                    ant_transit_prob_v(kk) = 0;
                    ant_transit_prob_p(kk) = 0;                    
               end
            end

            % if all neighborhood are in memory, then the permissible search range is RE-calculated.
            if (sum(sum(ant_transit_prob_v))==0) || (sum(sum(ant_transit_prob_p))==0)              
               for kk = 1:size(ant_search_range,1)
                    temp = (ant_search_range(kk,1)-1)*ncol + ant_search_range(kk,2);
                    ant_transit_prob_v(kk) = v(ant_search_range(kk,1), ant_search_range(kk,2));
                    ant_transit_prob_p(kk) = p(ant_search_range(kk,1), ant_search_range(kk,2));
               end
            end                        

            ant_transit_prob = (ant_transit_prob_v.^alpha) .* (ant_transit_prob_p.^beta) ./ (sum(sum((ant_transit_prob_v.^alpha) .* (ant_transit_prob_p.^beta))));       

            % generate a random number to determine the next position.
            rand('state', sum(100*clock));     
            temp = find(cumsum(ant_transit_prob)>=rand(1), 1);

            ant_next_row_idx = ant_search_range(temp,1);
            ant_next_col_idx = ant_search_range(temp,2);

            if length(ant_next_row_idx) == 0
               ant_next_row_idx = ant_current_row_idx;
               ant_next_col_idx = ant_current_col_idx;
            end

            ant_pos_idx(ant_idx,1) = ant_next_row_idx;
            ant_pos_idx(ant_idx,2) = ant_next_col_idx;

            %record the delta_p_current
            delta_p_current(ant_pos_idx(ant_idx,1), ant_pos_idx(ant_idx,2)) = 1;

            % record the new position into ant's memory
            if step_idx <= memory_length
               ant_memory(ant_idx,step_idx) = (ant_pos_idx(ant_idx,1)-1)*ncol + ant_pos_idx(ant_idx,2);
            elseif step_idx > memory_length
               ant_memory(ant_idx,:) = circshift(ant_memory(ant_idx,:),[0 -1]);
               ant_memory(ant_idx,end) = (ant_pos_idx(ant_idx,1)-1)*ncol + ant_pos_idx(ant_idx,2);

            end

            %update the pheromone function
            p = ((1-rho).*p + rho.*delta_p_current.*v).*delta_p_current + p.*(abs(1-delta_p_current));

        end % end of ant_idx

        % update the pheromone function
        delta_p = (delta_p + (delta_p_current>0))>0;
        p = (1-phi).*p;

    end % end of step_idx

end % end of iteration_idx

T = func_seperate_two_class(p);
imwrite(uint8(abs((p>=T).*255-255)), gray(256), ['test_edge.bmp'], 'bmp');    
fprintf('Done!\n');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Inner Function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function level = func_seperate_two_class(I)
%   ISODATA Compute global image threshold using iterative isodata method.
%   LEVEL = ISODATA(I) computes a global threshold (LEVEL) that can be
%   used to convert an intensity image to a binary image with IM2BW. LEVEL
%   is a normalized intensity value that lies in the range [0, 1].
%   This iterative technique for choosing a threshold was developed by Ridler and Calvard .
%   The histogram is initially segmented into two parts using a starting threshold value such as 0 = 2B-1,
%   half the maximum dynamic range.
%   The sample mean (mf,0) of the gray values associated with the foreground pixels and the sample mean (mb,0)
%   of the gray values associated with the background pixels are computed. A new threshold value 1 is now computed
%   as the average of these two sample means. The process is repeated, based upon the new threshold,
%   until the threshold value does not change any more.
%
% Reference :T.W. Ridler, S. Calvard, Picture thresholding using an iterative selection method,
%            IEEE Trans. System, Man and Cybernetics, SMC-8 (1978) 630-632.

% Convert all N-D arrays into a single column. Convert to uint8 for
% fastest histogram computation.

I = I(:);

% STEP 1: Compute mean intensity of image from histogram, set T=mean(I)
[counts, N]=hist(I,256);
i=1;
mu=cumsum(counts);
T(i)=(sum(N.*counts))/mu(end);

% STEP 2: compute Mean above T (MAT) and Mean below T (MBT) using T from
% step 1
mu2=cumsum(counts(N<=T(i)));
MBT=sum(N(N<=T(i)).*counts(N<=T(i)))/mu2(end);

mu3=cumsum(counts(N>T(i)));
MAT=sum(N(N>T(i)).*counts(N>T(i)))/mu3(end);
i=i+1;
T(i)=(MAT+MBT)/2;

% STEP 3 to n: repeat step 2 if T(i)~=T(i-1)
Threshold=T(i);
while abs(T(i)-T(i-1))>=1
    mu2=cumsum(counts(N<=T(i)));
    MBT=sum(N(N<=T(i)).*counts(N<=T(i)))/mu2(end);
    
    mu3=cumsum(counts(N>T(i)));
    MAT=sum(N(N>T(i)).*counts(N>T(i)))/mu3(end);
    
    i=i+1;
    T(i)=(MAT+MBT)/2;
    Threshold=T(i);
end

% Normalize the threshold to the range [i, 1].
level = Threshold;

 
IP IP Logged

 
Post Reply Post New Topic

Free Programming Courses in JAVA, .Net and PHP (Register Now!)

Java Free Online Course

.Net Free Online Course

PHP Free Online Course


 
Printable version Printable version

Forum Jump
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot delete your posts in this forum
You cannot edit your posts in this forum
You cannot create polls in this forum
You cannot vote in polls in this forum



This page was generated in 0.016 seconds.
© ProjectsQA.com   |   Privacy policy